Algebra of Limits
1. lim x→a [f(x) ± g(x)] = lim x→a f(x) ± lim x→ag(x)
2. lim x→a [k.f(x)] = k lim x→af(x)
3. lim x→a[f(x).g(x)] = [lim x→a f(x)][ lim x→a g(x)]
4. lim x→a [f(x)/g(x)] = [lim x→a f(x)]/[ lim x→a g(x)] provided lim x→a g(x) ≠ 0.
5. If f(x) is l.t. g(x) then lim x→a f(x) ≤ lim x→a g(x)